Copied to
clipboard

G = C62.30D6order 432 = 24·33

13rd non-split extension by C62 of D6 acting via D6/C2=S3

non-abelian, supersoluble, monomial

Aliases: C62.30D6, C4⋊(He33C4), He39(C4⋊C4), (C4×He3)⋊4C4, (C6×C12).11S3, (C3×C12)⋊2Dic3, (C3×C6).26D12, (C2×He3).7Q8, (C2×He3).25D4, (C3×C6).10Dic6, C2.1(He35D4), C325(C4⋊Dic3), C2.2(He34Q8), C6.19(C12⋊S3), C12.10(C3⋊Dic3), C6.10(C324Q8), C3.2(C12⋊Dic3), (C22×He3).23C22, (C2×C4×He3).7C2, C6.26(C2×C3⋊Dic3), C2.4(C2×He33C4), (C2×C12).21(C3⋊S3), (C2×He3).33(C2×C4), (C2×He33C4).2C2, (C3×C6).19(C2×Dic3), (C2×C4).3(He3⋊C2), C22.5(C2×He3⋊C2), (C2×C6).53(C2×C3⋊S3), SmallGroup(432,188)

Series: Derived Chief Lower central Upper central

C1C3C2×He3 — C62.30D6
C1C3C32He3C2×He3C22×He3C2×He33C4 — C62.30D6
He3C2×He3 — C62.30D6
C1C2×C6C2×C12

Generators and relations for C62.30D6
 G = < a,b,c,d | a6=b6=1, c6=b3, d2=a3, ab=ba, cac-1=ab2, dad-1=a-1b4, bc=cb, bd=db, dcd-1=b3c5 >

Subgroups: 453 in 143 conjugacy classes, 59 normal (19 characteristic)
C1, C2, C3, C3, C4, C4, C22, C6, C6, C2×C4, C2×C4, C32, Dic3, C12, C12, C2×C6, C2×C6, C4⋊C4, C3×C6, C2×Dic3, C2×C12, C2×C12, He3, C3×Dic3, C3×C12, C62, C4⋊Dic3, C3×C4⋊C4, C2×He3, C6×Dic3, C6×C12, He33C4, C4×He3, C22×He3, C3×C4⋊Dic3, C2×He33C4, C2×C4×He3, C62.30D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C4⋊C4, C3⋊S3, Dic6, D12, C2×Dic3, C3⋊Dic3, C2×C3⋊S3, C4⋊Dic3, He3⋊C2, C324Q8, C12⋊S3, C2×C3⋊Dic3, He33C4, C2×He3⋊C2, C12⋊Dic3, He34Q8, He35D4, C2×He33C4, C62.30D6

Smallest permutation representation of C62.30D6
On 144 points
Generators in S144
(1 66 52 13 123 115)(2 63 49 14 132 112)(3 72 58 15 129 109)(4 69 55 16 126 118)(5 136 107 35 89 76)(6 133 104 36 86 73)(7 142 101 33 95 82)(8 139 98 34 92 79)(9 90 81 18 137 100)(10 87 78 19 134 97)(11 96 75 20 143 106)(12 93 84 17 140 103)(21 85 80 45 144 99)(22 94 77 46 141 108)(23 91 74 47 138 105)(24 88 83 48 135 102)(25 65 59 39 122 110)(26 62 56 40 131 119)(27 71 53 37 128 116)(28 68 50 38 125 113)(29 64 54 44 121 117)(30 61 51 41 130 114)(31 70 60 42 127 111)(32 67 57 43 124 120)
(1 29 26 3 31 28)(2 30 27 4 32 25)(5 19 45 7 17 47)(6 20 46 8 18 48)(9 24 36 11 22 34)(10 21 33 12 23 35)(13 44 40 15 42 38)(14 41 37 16 43 39)(49 51 53 55 57 59)(50 52 54 56 58 60)(61 71 69 67 65 63)(62 72 70 68 66 64)(73 75 77 79 81 83)(74 76 78 80 82 84)(85 95 93 91 89 87)(86 96 94 92 90 88)(97 99 101 103 105 107)(98 100 102 104 106 108)(109 111 113 115 117 119)(110 112 114 116 118 120)(121 131 129 127 125 123)(122 132 130 128 126 124)(133 143 141 139 137 135)(134 144 142 140 138 136)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 21 13 45)(2 24 14 48)(3 23 15 47)(4 22 16 46)(5 31 35 42)(6 30 36 41)(7 29 33 44)(8 32 34 43)(9 39 18 25)(10 38 19 28)(11 37 20 27)(12 40 17 26)(49 143 112 96)(50 142 113 95)(51 141 114 94)(52 140 115 93)(53 139 116 92)(54 138 117 91)(55 137 118 90)(56 136 119 89)(57 135 120 88)(58 134 109 87)(59 133 110 86)(60 144 111 85)(61 100 130 81)(62 99 131 80)(63 98 132 79)(64 97 121 78)(65 108 122 77)(66 107 123 76)(67 106 124 75)(68 105 125 74)(69 104 126 73)(70 103 127 84)(71 102 128 83)(72 101 129 82)

G:=sub<Sym(144)| (1,66,52,13,123,115)(2,63,49,14,132,112)(3,72,58,15,129,109)(4,69,55,16,126,118)(5,136,107,35,89,76)(6,133,104,36,86,73)(7,142,101,33,95,82)(8,139,98,34,92,79)(9,90,81,18,137,100)(10,87,78,19,134,97)(11,96,75,20,143,106)(12,93,84,17,140,103)(21,85,80,45,144,99)(22,94,77,46,141,108)(23,91,74,47,138,105)(24,88,83,48,135,102)(25,65,59,39,122,110)(26,62,56,40,131,119)(27,71,53,37,128,116)(28,68,50,38,125,113)(29,64,54,44,121,117)(30,61,51,41,130,114)(31,70,60,42,127,111)(32,67,57,43,124,120), (1,29,26,3,31,28)(2,30,27,4,32,25)(5,19,45,7,17,47)(6,20,46,8,18,48)(9,24,36,11,22,34)(10,21,33,12,23,35)(13,44,40,15,42,38)(14,41,37,16,43,39)(49,51,53,55,57,59)(50,52,54,56,58,60)(61,71,69,67,65,63)(62,72,70,68,66,64)(73,75,77,79,81,83)(74,76,78,80,82,84)(85,95,93,91,89,87)(86,96,94,92,90,88)(97,99,101,103,105,107)(98,100,102,104,106,108)(109,111,113,115,117,119)(110,112,114,116,118,120)(121,131,129,127,125,123)(122,132,130,128,126,124)(133,143,141,139,137,135)(134,144,142,140,138,136), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,21,13,45)(2,24,14,48)(3,23,15,47)(4,22,16,46)(5,31,35,42)(6,30,36,41)(7,29,33,44)(8,32,34,43)(9,39,18,25)(10,38,19,28)(11,37,20,27)(12,40,17,26)(49,143,112,96)(50,142,113,95)(51,141,114,94)(52,140,115,93)(53,139,116,92)(54,138,117,91)(55,137,118,90)(56,136,119,89)(57,135,120,88)(58,134,109,87)(59,133,110,86)(60,144,111,85)(61,100,130,81)(62,99,131,80)(63,98,132,79)(64,97,121,78)(65,108,122,77)(66,107,123,76)(67,106,124,75)(68,105,125,74)(69,104,126,73)(70,103,127,84)(71,102,128,83)(72,101,129,82)>;

G:=Group( (1,66,52,13,123,115)(2,63,49,14,132,112)(3,72,58,15,129,109)(4,69,55,16,126,118)(5,136,107,35,89,76)(6,133,104,36,86,73)(7,142,101,33,95,82)(8,139,98,34,92,79)(9,90,81,18,137,100)(10,87,78,19,134,97)(11,96,75,20,143,106)(12,93,84,17,140,103)(21,85,80,45,144,99)(22,94,77,46,141,108)(23,91,74,47,138,105)(24,88,83,48,135,102)(25,65,59,39,122,110)(26,62,56,40,131,119)(27,71,53,37,128,116)(28,68,50,38,125,113)(29,64,54,44,121,117)(30,61,51,41,130,114)(31,70,60,42,127,111)(32,67,57,43,124,120), (1,29,26,3,31,28)(2,30,27,4,32,25)(5,19,45,7,17,47)(6,20,46,8,18,48)(9,24,36,11,22,34)(10,21,33,12,23,35)(13,44,40,15,42,38)(14,41,37,16,43,39)(49,51,53,55,57,59)(50,52,54,56,58,60)(61,71,69,67,65,63)(62,72,70,68,66,64)(73,75,77,79,81,83)(74,76,78,80,82,84)(85,95,93,91,89,87)(86,96,94,92,90,88)(97,99,101,103,105,107)(98,100,102,104,106,108)(109,111,113,115,117,119)(110,112,114,116,118,120)(121,131,129,127,125,123)(122,132,130,128,126,124)(133,143,141,139,137,135)(134,144,142,140,138,136), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,21,13,45)(2,24,14,48)(3,23,15,47)(4,22,16,46)(5,31,35,42)(6,30,36,41)(7,29,33,44)(8,32,34,43)(9,39,18,25)(10,38,19,28)(11,37,20,27)(12,40,17,26)(49,143,112,96)(50,142,113,95)(51,141,114,94)(52,140,115,93)(53,139,116,92)(54,138,117,91)(55,137,118,90)(56,136,119,89)(57,135,120,88)(58,134,109,87)(59,133,110,86)(60,144,111,85)(61,100,130,81)(62,99,131,80)(63,98,132,79)(64,97,121,78)(65,108,122,77)(66,107,123,76)(67,106,124,75)(68,105,125,74)(69,104,126,73)(70,103,127,84)(71,102,128,83)(72,101,129,82) );

G=PermutationGroup([[(1,66,52,13,123,115),(2,63,49,14,132,112),(3,72,58,15,129,109),(4,69,55,16,126,118),(5,136,107,35,89,76),(6,133,104,36,86,73),(7,142,101,33,95,82),(8,139,98,34,92,79),(9,90,81,18,137,100),(10,87,78,19,134,97),(11,96,75,20,143,106),(12,93,84,17,140,103),(21,85,80,45,144,99),(22,94,77,46,141,108),(23,91,74,47,138,105),(24,88,83,48,135,102),(25,65,59,39,122,110),(26,62,56,40,131,119),(27,71,53,37,128,116),(28,68,50,38,125,113),(29,64,54,44,121,117),(30,61,51,41,130,114),(31,70,60,42,127,111),(32,67,57,43,124,120)], [(1,29,26,3,31,28),(2,30,27,4,32,25),(5,19,45,7,17,47),(6,20,46,8,18,48),(9,24,36,11,22,34),(10,21,33,12,23,35),(13,44,40,15,42,38),(14,41,37,16,43,39),(49,51,53,55,57,59),(50,52,54,56,58,60),(61,71,69,67,65,63),(62,72,70,68,66,64),(73,75,77,79,81,83),(74,76,78,80,82,84),(85,95,93,91,89,87),(86,96,94,92,90,88),(97,99,101,103,105,107),(98,100,102,104,106,108),(109,111,113,115,117,119),(110,112,114,116,118,120),(121,131,129,127,125,123),(122,132,130,128,126,124),(133,143,141,139,137,135),(134,144,142,140,138,136)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,21,13,45),(2,24,14,48),(3,23,15,47),(4,22,16,46),(5,31,35,42),(6,30,36,41),(7,29,33,44),(8,32,34,43),(9,39,18,25),(10,38,19,28),(11,37,20,27),(12,40,17,26),(49,143,112,96),(50,142,113,95),(51,141,114,94),(52,140,115,93),(53,139,116,92),(54,138,117,91),(55,137,118,90),(56,136,119,89),(57,135,120,88),(58,134,109,87),(59,133,110,86),(60,144,111,85),(61,100,130,81),(62,99,131,80),(63,98,132,79),(64,97,121,78),(65,108,122,77),(66,107,123,76),(67,106,124,75),(68,105,125,74),(69,104,126,73),(70,103,127,84),(71,102,128,83),(72,101,129,82)]])

62 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F4A4B4C4D4E4F6A···6F6G···6R12A12B12C12D12E···12T12U···12AB
order12223333334444446···66···61212121212···1212···12
size111111666622181818181···16···622226···618···18

62 irreducible representations

dim1111222222233366
type+++++--+-+
imageC1C2C2C4S3D4Q8Dic3D6Dic6D12He3⋊C2He33C4C2×He3⋊C2He34Q8He35D4
kernelC62.30D6C2×He33C4C2×C4×He3C4×He3C6×C12C2×He3C2×He3C3×C12C62C3×C6C3×C6C2×C4C4C22C2C2
# reps1214411848848422

Matrix representation of C62.30D6 in GL7(𝔽13)

0100000
121200000
00012000
0011000
0000010
0000001
0000100
,
12000000
01200000
00120000
00012000
0000900
0000090
0000009
,
6300000
10300000
00310000
0036000
0000100
0000030
0000009
,
71000000
3600000
00211000
00911000
00001200
0000004
00000100

G:=sub<GL(7,GF(13))| [0,12,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0],[12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,9],[6,10,0,0,0,0,0,3,3,0,0,0,0,0,0,0,3,3,0,0,0,0,0,10,6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,9],[7,3,0,0,0,0,0,10,6,0,0,0,0,0,0,0,2,9,0,0,0,0,0,11,11,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,10,0,0,0,0,0,4,0] >;

C62.30D6 in GAP, Magma, Sage, TeX

C_6^2._{30}D_6
% in TeX

G:=Group("C6^2.30D6");
// GroupNames label

G:=SmallGroup(432,188);
// by ID

G=gap.SmallGroup(432,188);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,141,64,1124,4037,537]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=b^3,d^2=a^3,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1*b^4,b*c=c*b,b*d=d*b,d*c*d^-1=b^3*c^5>;
// generators/relations

׿
×
𝔽